decomposes rapidly to O_2 and F_2 close to its normal boiling point of -57° . Little is published concerning the chemistry of this compound and we wisb to report here its reaction with tetrafluoroethytene.

Dioxygen difluoride was prepared in an electrical discharge by a method described by Kirshenbaum and Grosse.² The method yields O₂F₂ when the proportions of oxygen and fluorine are 1:1. The discharge tube, which also was used as the reactor, was maintained at -196° during the preparation and was warmed and cooled slightly several times with pumping to remove any dissolved oxygen.

The reactions were conducted by allowing **tetra**fluordethylene to condense into the reactor containing the solid O_2F_2 at -196° , maintained with a liquid nitrogen-filled dewar. Upon contact, flashes were observed even at this temperature and these continued with gradual lowering **of** the liquid nitrogen level. The products **from** the reaction were COF₂ and CF₄ with lesser amounts of C_2F_6 , SiF₄, and CF_3OOCF_3 . All products were isolated by conventional vacuum line fractional condensation and chromatographic techniques and were identified by their reported infrared and mass spectra. In an additional experiment, several liquid cc. of diluent argon (vapor pressure at $-196^{\circ} = 200$ mm.) were condensed into the reactor containing the O_2F_2 . The C_2F_4 was allowed to diffuse to the cold zone. **A** single small flash was observed. In addition to the above products, CF_3OF , OF_2 , and C_4F_{10} also were produced. Finally, the C₂F₄ was highly diluted with helium before being passed through the reactor at -196^o and 2-4 mm. No flashes were noticed during addition, but on warming a few were again observed. Most of the condensable material was volatile at -160° and the products included the above (with the exception of OF₂) along with CO₂,

 $C_2F_6OCF_4$, and F_2C° CF_2 . No C_2F_4 or O_2F_2 was F_2C —

recovered from any of these experiments. These resuits were generally reproducible if similar conditions were employed.

Most of the steps necessary **td** give the products isokiked (undevlined) can **be** explained **by 'known** f **reactions (eq. 3, 4, and 5). Equations 1 and 2 may offer** zin explanation **for** the **prikary** reactim.

$$
O_2F_2
$$
\n
$$
O_2F_2
$$
\n
$$
C_2F_4
$$
\n
$$
C_2F_4
$$
\n
$$
F_2C
$$
\n
$$
F_1C
$$
\n<

0 **FF COFZ** + **(flF2')n-1-4 (2) CSOF** ;F **C2F4** + **CzFsOCFa *s4 (3) A 2CFsOF** + **Y)F4** + **COz** + **1Fz-1 (4)** --

$$
CFsOF + COF2 \longrightarrow CFsQOCF3^{ab}
$$
 (5)

The great reactivity of $CF₃OF$ at ignition temperature no doubt explains its isolation in low **yieid.** It is suggested that this reaction under **the** *proper* conditions probably would give a higher yield of CF₃OF.

Grateful acknowledgment is made to Mr. **L. Adlum for** interpretation of the infrared data.

(3) (s) **men tlie authors in ref. 3b attem~ted tKs reattion, addi**tion did not occur; instead Teflon-like polymers or CF₄ and CO **were produced. However, the authors in ref. 4 did effect addition 6f CF&P to ethyrene to give C~OCIHC~T and the conditions ased in the current work may explain the results.** (b) **R. S. Porter and G. H. Cady, J.** *Am. Chcm. SOC.,* **79, 5625, 5628 (1957).**

(4) J. A. C. *Allisqn* **and** G. **H. Cady,** *ibid.,* **81, 1089 (1959).**

(5) Office of the Secretary of Defense, Advanced Research Proj**ects Agency, Washington 25, D.** *C.*

RÉACTION MOTORS DIVISION RICHARD T. HOLZMANN' THIOKOL CHEMICAL CORPORATION MURRAY S. COHEN THIOKOL CHEMICAL CORPORATION DENVILLE, NEW JERSEY

RECEIVED SEPTEMBER 5, 1961

Commenk Concerning the Effect on the Diborane-Pentaborane Exchange Reaction of the Reported Deuterium Isotope ERect in 'the Decomposition of Diboranel

Sir:

In a recent paper² calculation of the ratio of equilibrium constants for dissociation of B_2D_6 and B_2H_6 was reported to lead to the conclusion that under identical conditions the $BD₃$ concentration will be about twice as large as the $BH₃$ concentration. This is significant in view of the fact that diborane-pentaborane isotopic exchange reactions which Professor **Koski** and the author

⁽¹⁾ *b.* **Ruff and W. Men&,** *Z. ahom. ullgsnt.* **mht'm., 111, ²⁰⁴ (1933).**

⁽²⁾ A. D. Eirsheubaum and A. V. Cltoske, *J. Am. Cheh. Soc.,* **bl, 1277 (1959).**

⁽¹⁾ *l%B* **wdkk w6s shppor'ftd ?n pdrt by the Office of Wakal Research**

⁽²⁾ **R. E. Enrione and R. Schaeffer**, *J. Inorg. Nucl. Chem.*, 18, **103 (1961).**

ran some years ago showed the rate of exchange of $B_2D_6-B_6H_9$ to be faster than that of the reverse exchange $B_2H_6-B_5D_9.^3$ This can be seen from Fig. **3** of reference **3,** the distribution of partially deuterated pentaboranes from (a) $B_2D_6-B_5H_9$ and (b) $B_2H_6-B_5H_9$ exchange reactions run under identical conditions, where the species due to exchange are greater in (a). **A** larger concentration of BD_3 than of BH_3 in a comparable reaction would lead to this result.

Also, the decomposition rate of B_2H_6 appeared to be *five* times faster than that of $B_2D_6^2$ if one follows the rate of hydrogen evolution assuming the rate-determining step to be
 $B_3H_9 \longrightarrow B_3H_7 + H_2$

$$
B_8H_9 \longrightarrow B_8H_7 + H_2
$$

This result also is pertinent to the diboranepentaborane exchange because a complication in this exchange is the synthesis of some partially deuterated (or partially hydrogenated) pentaborane from the diborane during the course of the exchange reaction at 80° . A larger amount of pentaborane was synthesized from the diborane in the $B_2H_6-B_5D_9$ exchange than was synthesized in the reverse exchange $B_2D_6-B_5H_9$; this is entirely in accord with the observed deuterium isotope effect reported in the decomposition of diborane.

There is further experimental evidence from the exchange studies which relates to this observed isotope effect in diborane decomposition. For calibration of both infrared and mass spectrometric experiments, samples of partially deuterated penta- and decaboranes with random distribution of deuteriums were prepared by pyrolysis of partially deuterated diborane samples under appropriate conditions.⁴ The original partially deuterated diboranes were made by mixing B_2H_6 and B_2D_6 in the proper proportions, equilibrating the mixture by self-exchange to random $H-D$ distribution, and checking for deuterium content by thermal conductivity⁵; then the diboranes were pyrolyzed. The deuterium contents of the final penta- or decaboranes prepared this way were always several per cent higher than those of the starting diboranes themselves.⁶ Since B_3X_9 $(X = H \text{ or } D)$ probably also is the intermediate

in the rate-controlling step of the pyrolysis to form the higher boron hydrides, the observed fivetimes faster rate of H_2 evolution than of D_2 evolution would indeed favor a product with a higher deuterium content than the starting material.

There is another experimental datum which might conceivably be related to the greater concentration of BD_3 relative to BH_3 . In a mass spectrometric appearance potential study of isotopically labeled diboranes,' the apparently anomalous experimental observation was made that the appearance potential of BH_3 ⁺ from B_2H_6 was about 0.4 e.v. higher than that of $BD₃$ ⁺ from **)B2D6.** The relationship that, from a molecule $R_1 - R_2$

$$
A(R_1^+) = I(R_1) + D(R_1 - R_2)
$$

[where $A(R_1^+)$ is the appearance potential of R_1^+ , $I(R_1)$ is the ionization potential of R_1 , and $D(R_1-R_2)$ is the bond dissociation energy], would lead one to the conclusion that either *I-* (BD_3) or $D(BD_3-BD_3)$ must be unusually low compared to the hydrogenated compound. **A** recent measurement of the heat of formation of deuterated diborane shows the heat of dissociation of B_2D_6 to be what one normally would expect from the differences in zero point energies.⁸ There appears little reason to believe that $I(BD_3)$ is 0.4 e.v. lower than $I(BH_3)$. However, there now seems to be an alternative explanation for this observed discrepancy in the appearance potentials. Appearance potentials are pressure dependent. **A** combination of the higher concentration of BD_3 originally present together with the BD_3 formed from B_2D_6 upon electron impact would raise the effective pressure of $BD₃$ relative to $BH₃$ (from $B₂H₆$). This quite possibly would lead to a lower observed appearance potential for BD_3 ⁺ than for BH_3 ⁺.

One last comment might be added here. The calculations2 were performed assuming molecular parameters for B_2H_6 and B_2D_6 to be the same. However, the author has had some question as to the validity of this assumption for the past several years and has proposed instead the following structure: Terminal B-D bonds in B_2D_6 are presumed to be shorter than terminal B-H bonds by approximately the same amount as

⁽³⁾ W. S. Koski, J. J. **Kaufman, L. Friedman, and A. P.** Ira, *J. Chem. Phys.,* **14,221 (1956).**

^{(4) (}a) J. J. **Kaufman and W. S. Koski,** *J. Chcm. Phys., 24,* **⁴⁰³ (1956); (b)** *J.* **Am.** *Chcm.* **SOC., 78, 5774 (1956).**

⁽⁵⁾ W. S. KO&, P. C. Maybury, and J. J. **Kaufman, And.** *Chcm.,* **16, 1992 (1954).**

⁽⁶⁾ J. J. **Kaufman and W. S. Koski, unpublished experimental results.**

⁽⁷⁾ W. S. Xoski. J. J. **Kaufman,** *C.* **F. Pachucki, and F.** J. **Shipko,** *J.* **Am.** *Chcm.* **Soc., 80,3202 (1958).**

⁽⁸⁾ S. R. Gunn and L. G. Greene, *J. Chcm. Phys.,* **36, 1118 (1962).**

normal C-D bonds are shorter than normal **C-H** bonds; on the other hand, bridge B-D bonds are postulated to be longer than bridge B-H bonds, While there is no direct experimental evidence to confirm this hypothesis, a recent preliminary electron diffraction study of deuterated diborane reports that the average of B-H terminal and bridge distances in B_2H_6 and the average of B-D terminal and bridge distances in B_2D_6 are almost the same.⁹ Since it seems very likely that the terminal B-D distance in B_2D_6 is shorter than the terminal B-H distance in B_2H_6 , it is quite probable that the bridge B-D distance is longer than the bridge B-H distance. However, this point awaits experimental confirmation, possibly by differential neutron diffraction of B_2 ¹¹H₆ and B_2 ¹¹ D_6 .

(9) L. S. **Bartell, paper presented before the Division of Chemical Physics, American Physical Society Meeting, March, 1982.**

RIAS, 7212 BELLONA AVE. BALTIMORE 12, **MARYLAND JOYCE J. KAUFMAN**

RECEIVED MAY 2, 1962

Observations on the Hydrolysis Product Distributions for Some Inner Transition Metal Carbides

Sir:

In a recent article, Palenik and Warf' reported on the hydrolysis of lanthanum and cerium carbides. The purpose of this communication is to point out some similarities in the hydrolysis product distributions of the rare earth carbides $LaC₂$ and $CeC₂$ and the actinide carbides $ThC₂$ and UC₂, and to show that the prediction of Palenik and Warf' concerning the nature of the $ThC₂$ and UC₂ hydrolysis products is indeed correct.

In recent investigations in this Laboratory, Kempter and Krikorian² and Kempter³ studied the hydrolysis of ThC and ThC₂ and UC and $UC₂$, respectively. Although the hydrolysis product distributions from the homotypic carbides $ThC₂$ and UC₂ appeared to be dissimilar, it was found3 that both consisted of about two-thirds even-numbered carbon atom hydrocarbons, about three-tenths hydrogen **plus** methane, and a small fraction of catenated odd-numbered carbon atom hydrocarbons. **In** examining the composition of hydrocarbons, excluding methane, from the **25** *^O* hydrolysis¹ of the isomorphous carbides $LaC₂$ and $CeC₂$, one sees a semiquantitative agreement between individual species and between total alkanes, total alkenes, and total alkynes. However, if one sums the even-numbered carbon atom hydrocarbons, the catenated odd-numbered hydrocarbons, and the unidentified components, the agreement is much better. The various summations of hydrolysis products for $LaC₂$, $CeC₂$, ThC₂, and UC₂ are shown for comparison in Table I. Hydrogen and methane are not included in any of the totals because Palenik and Wart' used liquid nitrogen to condense their samples; in the room temperature runs they obtained about **5** mole % non-condensables. The mole percentages of hydrogen and methane not included in the Th C_2 and U C_2 hydrolysis product totals are **27.2%** Hz, **2.35%** CH4 and **14.1% H2, 17.3%** CH4, respectively. Methane is of course the only non-catenated odd-numbered carbon atom hydrocarbon.

All totals expressed in mole % of **total catenated hydrocarbons produced** in **room temperature hydrolysis.** ' **Hydrocarbons above** CIH,.

It also is apparent that the prediction of Palenik and Warf¹ that in the case of thorium and uranium carbides "the two-electron oxidation in the hydrolysis reaction is expected to produce more hydrogen and hydrogenated hydrocarbons than in the case of the rare earth dicarbides" is consistent with the hydrolysis product data for ThC₂ and UC₂.

Los **ALAMOS SCIENTIFIC LABORATORY UNIVERSITY OF CALIFORNIA Los ALAMOS, NEW MEXICO** C. **P. KEMPTER**

RECEIVED JULY 9, 1962

⁽¹⁾ G. J. Palenik and J. C. Warf, *Inorg. Chcm.,* **1, 345 (1962).**

⁽²⁾ C. P. Kempter and N. H. Krikorian, *J. Leas-Common Melds,* **4, 244 (1982).**

⁽³⁾ C. P. Kempter, *ibid..* **in press.**